24 research outputs found

    Gazedirector: Fully articulated eye gaze redirection in video

    Get PDF
    We present GazeDirector, a new approach for eye gaze redirection that uses model-fitting. Our method first tracks the eyes by fitting a multi-part eye region model to video frames using analysis-by-synthesis, thereby recovering eye region shape, texture, pose, and gaze simultaneously. It then redirects gaze by 1) warping the eyelids from the original image using a model-derived flow field, and 2) rendering and compositing synthesized 3D eyeballs onto the output image in a photorealistic manner. GazeDirector allows us to change where people are looking without person-specific training data, and with full articulation, i.e. we can precisely specify new gaze directions in 3D. Quantitatively, we evaluate both model-fitting and gaze synthesis, with experiments for gaze estimation and redirection on the Columbia gaze dataset. Qualitatively, we compare GazeDirector against recent work on gaze redirection, showing better results especially for large redirection angles. Finally, we demonstrate gaze redirection on YouTube videos by introducing new 3D gaze targets and by manipulating visual behavior

    Dynamic behavior analysis via structured rank minimization

    Get PDF
    Human behavior and affect is inherently a dynamic phenomenon involving temporal evolution of patterns manifested through a multiplicity of non-verbal behavioral cues including facial expressions, body postures and gestures, and vocal outbursts. A natural assumption for human behavior modeling is that a continuous-time characterization of behavior is the output of a linear time-invariant system when behavioral cues act as the input (e.g., continuous rather than discrete annotations of dimensional affect). Here we study the learning of such dynamical system under real-world conditions, namely in the presence of noisy behavioral cues descriptors and possibly unreliable annotations by employing structured rank minimization. To this end, a novel structured rank minimization method and its scalable variant are proposed. The generalizability of the proposed framework is demonstrated by conducting experiments on 3 distinct dynamic behavior analysis tasks, namely (i) conflict intensity prediction, (ii) prediction of valence and arousal, and (iii) tracklet matching. The attained results outperform those achieved by other state-of-the-art methods for these tasks and, hence, evidence the robustness and effectiveness of the proposed approach

    Variational infinite hidden conditional random fields

    Get PDF
    Hidden conditional random fields (HCRFs) are discriminative latent variable models which have been shown to successfully learn the hidden structure of a given classification problem. An Infinite hidden conditional random field is a hidden conditional random field with a countably infinite number of hidden states, which rids us not only of the necessity to specify a priori a fixed number of hidden states available but also of the problem of overfitting. Markov chain Monte Carlo (MCMC) sampling algorithms are often employed for inference in such models. However, convergence of such algorithms is rather difficult to verify, and as the complexity of the task at hand increases the computational cost of such algorithms often becomes prohibitive. These limitations can be overcome by variational techniques. In this paper, we present a generalized framework for infinite HCRF models, and a novel variational inference approach on a model based on coupled Dirichlet Process Mixtures, the HCRF-DPM. We show that the variational HCRF-DPM is able to converge to a correct number of represented hidden states, and performs as well as the best parametric HCRFs - chosen via cross-validation - for the difficult tasks of recognizing instances of agreement, disagreement, and pain in audiovisual sequences

    A listener model: introducing personality traits

    No full text
    International audienceWe present a computational model that generates listening behaviour for a virtual agent. It triggers backchannel signals according to the user's visual and acoustic behaviour. The appropriateness of the backchannel algorithm in a user-agent situation of storytelling, has been evaluated by naĂŻve participants, who judged the algorithm-ruled timing of backchannels more positively than a random timing. The system can generate different types of backchannels. The choice of the type and the frequency of the backchannels to be displayed is performed considering the agent's personality traits. The personality of the agent is defined in terms of two dimensions, extroversion and neuroticism. We link agents with a higher level of extroversion to a higher tendency to perform more backchannels than introverted ones, and we link neuroticism to less mimicry production and more response and reactive signals sent. We run a perception study to test these relations in agent-user interactions, as evaluated by third parties. We find that the selection of the frequency of backchannels performed by our algorithm contributes to the correct interpretation of the agent's behaviour in terms of personality traits
    corecore